
937

Multiagent Commitment Alignment

Amit K. Chopra
University of Trento, Italy

akchopra.mail@gmail.com

Munindar P. Singh
North Carolina State University, USA

singh@ncsu.edu

ABSTRACT
Commitments provide a basis for understanding interactions in mul-
tiagent systems. Successful interoperation relies upon the interact-
ing parties being aligned with respect to their commitments. How-
ever, alignment is nontrivial in a distributed system where agents
communicate asynchronously and make different observations. We
propose a formalization for commitments that ensures alignment
despite asynchrony. This formalization consists of three elements:
(1) a semantics of commitment operations; (2) messaging patterns
that implement the commitment operations; and (3) weak constraints
on agents’ behaviors to ensure the propagation of vital information.
We prove that our formalization ensures alignment. We illustrate
the generality of our formalization with several real-life scenarios.

Categories and Subject Descriptors
D.2.12 [Software Engineering]: Interoperability; I.2.11 [Artificial
Intelligence]: Distributed Artificial Intelligence—Multiagent Sys-
tems

General Terms
Theory

Keywords
Commitments, Alignment, Autonomy, Asynchrony

1. INTRODUCTION
C(debtor , creditor , antecedent , consequent) means the debtor

commits to the creditor that if antecedent holds, then the conse-
quent will hold. An important insight in agent communication is
that the interactions among agents may be understood in terms of
their effects on the agents’ commitments. For example, an offer for
a copy of the book Beating the Odds from Bookie to Alice may be
interpreted as C(Bookie, Alice, $12, BeatingtheOdds). In other
words, Bookie commits to Alice that if Alice pays $12, then Bookie
will deliver the book.

Imagine if Alice presumes that Bookie is committed to sending
her the book she paid for, but Bookie is not committed to sending
her the book. Their interaction would break down. In general, a
key requirement for successful interaction is that the interacting
agents remain aligned with respect to their commitments. Cru-
cially, it turns out that even well-designed, well-behaved agents

Cite as: Multiagent Commitment Alignment, Amit K. Chopra and Munin-
dar P. Singh, Proc. of 8th Int. Conf. on Autonomous Agents and Mul-
tiagent Systems (AAMAS 2009), Decker, Sichman, Sierra and Castel-
franchi (eds.), May, 10–15, 2009, Budapest, Hungary, pp. XXX-XXX.
Copyright c© 2009, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

may become misaligned simply because of the distributed nature
of the given system. Previous approaches have largely ignored this
problem or addressed it through restrictive, ad hoc assumptions.
However, as commitment protocols expand into real-life distributed
settings, a rigorous treatment becomes essential.

We consider realistic, distributed settings where agents commu-
nicate via asynchronous messaging. Asynchrony means that an
agent is never blocked from sending a message. In such a sys-
tem, the messages that the agents send each other may cross on
the wire. Thus, in general, the agents may observe different mes-
sages in different orders. Since messages are understood in terms
of their effects on commitments, the agents involved would become
misaligned, i.e., come to conflicting conclusions about which com-
mitments hold and which do not.

It is crucial to develop a formalization of commitments that en-
sures alignment despite asynchrony. First, distributed computing
infrastructure is necessarily asynchronous. Large-scale systems
exhibit high latency making synchronous interactions simply in-
tractable in practice. Second, any formalization that works de-
spite asynchrony also works in “more synchronous” settings, that
is, those imposing additional constraints on agent behavior—for
example, one where agents take turns sending messages. Third,
asynchrony is inherently compatible with agent autonomy simply
because an agent is never blocked from sending a message and,
more pertinently, from acting upon its commitments.

In the absence of a formalization that supports reasoning about
commitments in distributed settings, all research in applications of
commitments is bound to report results that are either not general
enough or are unduly complex. Such a formalization is currently
missing; this paper seeks to fill this gap.
Motivation. Informally, we say that agents are aligned, if when-
ever an agent infers a commitment in which it is the creditor, the
debtor of the commitment also infers that commitment. There are
two possible causes of misalignment. One, the agents may as-
sign incompatible meanings to the messages they are exchanging.
Two, even when the agents assign identical meanings to the rele-
vant messages, they may make incompatible observations. Chopra
and Singh [2] solve the former for a language similar to ours. This
paper addresses the second problem. Let’s consider some examples
to highlight the problem.

EXAMPLE 1. (Figure 1(A)). Bookie sends Alice (a message that
expresses) an offer that if she pays $12, then Bookie will deliver to
her a copy of the book Beating the Odds. Alice sends Bookie a
rejection of the offer. Upon receipt, Bookie resends the offer.

As is typical in commitment protocols, Bookie’s offer creates a
commitment from Bookie to Alice for the book Beating the Odds
in return for $12. In Example 1, both Alice and Bookie observe the
messages in the same order, and therefore remain aligned.

Cite as: Multiagent Commitment Alignment, Amit K. Chopra, Munin-
dar P. Singh, Proc. of 8th Int. Conf. on Autonomous Agents and Multia-
gent Systems (AAMAS 2009), Decker, Sichman, Sierra and Castelfranchi
(eds.), May, 10–15, 2009, Budapest, Hungary, pp. 937–944
Copyright © 2009, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org), All rights reserved.

AAMAS 2009 • 8th International Conference on Autonomous Agents and Multiagent Systems • 10–15 May, 2009 • Budapest, Hungary

938

EXAMPLE 2. (Figure 1(B)). Bookie makes Alice an offer. Not
seeing a response from Alice, Bookie resends the offer. Suppose
that, in the meantime, Alice sends Bookie a rejection of the offer.
Then the rejection crosses Bookie’s repetition of the offer.

Figure 1: Scenarios (B),(C), and (D) end in misalignment

What ought Bookie and Alice to infer about the offer at the end of
the exchange shown in Figure 1(B)? After seeing Alice’s rejection
of the offer, Bookie may infer that there no longer exists an offer
to Alice. However, having seen an offer message last, Alice may
infer that the offer holds. That is, Alice infers a commitment from
Bookie for a copy of Beating the Odds for $12, whereas Bookie
does not infer that commitment. This misalignment occurs because
Alice’s rejection and Bookie’s offer messages crossed in transit.
Note that Figures 1(A) and 1(B) imply a race condition between
offer and rejection: their order (as viewed by Bookie) matters and
yet Alice cannot distinguish between the two orders.

EXAMPLE 3. (Figure 1(C)). Bookie makes an offer that Alice
accepts and sends the payment for. In the meantime, Bookie cancels
the offer. Bookie’s cancellation and Alice’s payment cross.

In Example 3, upon sending the payment, Alice infers that Bookie
is committed to sending her a copy of the book. Later, when Alice
sees Bookie’s cancel message, she regards it as spurious. However,
Bookie sees the payment only after he has canceled its offer. So
Bookie considers Alice’s payment late. The result is that Alice in-
fers an unconditional commitment for the book from Bookie, but
one that Bookie does not infer. A race between cancellation and
payment causes misalignment.

EXAMPLE 4. (Figure 1(D)) Here, Bookie sends an offer, but in
the meantime Alice sends a rejection.

In the scenario in Example 4, Bookie infers the offer was rejected
because that is the message it last sees, whereas Alice infers the
offer exists because that is the message she last sees. Admittedly,
the scenario is pathological: it makes no sense for Alice to reject an
offer that Bookie never made. However, scenarios where messages
arrive unexpectedly can occur when multiple parties are involved,
and messages happen to be delayed differently on different paths.
This is analogous to when one receives a group reply to an email
before receiving the original email.

As the above examples demonstrate, asynchrony throws a major
challenge in the face of alignment. Even agents who are perfectly
designed and who assign identical meanings to messages may end
up misaligned. Another way to cast this problem is in terms of the
commitment operations, which show how to manipulate commit-
ments [12]. Existing formalizations of the operations, e.g., [3], do
not support reasoning in distributed settings.

Current approaches for alignment fall into two main categories.
Some use acknowledgments [8] as a way of serializing the oper-
ations in distributed settings. The idea is that the agents involved
would observe the relevant messages in the same order, and hence
make the same inferences. Such approaches are incompatible with
autonomy. Autonomy compatibility means that no agent should
have to wait for approval from other agents to effect a change in

its commitments. In an acknowledgment-based approach, for ex-
ample, to effect a cancellation or discharge of a commitment, the
debtor would have to seek the creditor’s approval, which completely
begs intuition.

Others suggest commitments of the form C(id , x, y, r, u), where
id is a unique identifier termed as the commitment identifier [4,
11]. Commitment operations would then reference these identi-
fiers. Commitment identifiers fail to meet semanticity. Semantic-
ity means that the proposal should accommodate general reasoning
about commitments. For example, with identifiers, if C(id0, x, y, r,

u) and C(id1, x, y, r, v) hold, semantically it still ought to be the
case that C(_, x, y, r, u∧v) holds (‘_’ is some identifier). To reason
with identifiers, one would need to track dependencies for commit-
ments a la distributed truth maintenance [6]. Any such approach
would be more complex than the approach presented here, without
being more general.
Contributions. Our primary contribution is a formalization con-
sisting of three elements: (1) messaging patterns that communicate
the commitment operations; (2) a semantics of the operations that
determines each participating agent’s inferences regarding commit-
ments; and (3) constraints on agent behavior described as messages
the agents must send under specific circumstances. We prove that
our formalization eliminates misalignments, and illustrate its intu-
itiveness and generality with the help of various examples. A note-
worthy feature of our formalization is that it does not involve com-
puting global system states [7] and then detecting misalignments;
the formalization guarantees alignment without any coordination
whatsoever between agents.

Our formalization is both autonomy compatible and semantic. In
particular, our formalization does not rely upon using commitment
identifiers as introduced above. Later in the paper, we show how
domain identifiers may be used, if necessary.
Organization. The structure of this paper is as follows. Section 2
discusses commitments. Section 3 introduces the principles of our
approach. Section 4 presents a formal model of communication and
defines alignment. Section 5 formalizes the principles and proves
that alignment is guaranteed for all possible multiagent executions.
Section 6 discusses related work and summarizes our contributions.

2. COMMITMENTS
Below, x,y, etc are variables over agents; p, q, r, etc. are proposi-

tional variables; ∨, ∧, ¬, →, ↔ are the usual propositional connec-
tives; � and ⊥ are the constants for truth and falsity, respectively;
	 is the usual propositional inference symbol. Read ⇒ as implies.

A commitment is of the form C(x, y, r, u). If r holds, then
C(x, y, r, u) is detached, and the commitment C(x, y,�, u) holds.
If u holds, then the commitment is discharged and doesn’t hold any
longer. All commitments are conditional; an unconditional com-
mitment is merely a special case where the antecedent equals �.
Reasoning postulates for commitments are reproduced below [13].
For brevity, we omit the agents when they can be understood from
the context. Further, when the postulates uniformly use the debtor
x and creditor y, we write C(r, u) instead of C(x, y, r, u).

B1. DISCHARGE. u → ¬C(r, u)

B2. DETACH. C(r ∧ s, u) ∧ r → C(s, u).
B3. AUGMENT. From C(r, u) ∧ s 	 r, infer C(s, u)

B4. L-DISJOIN. C(r, u) ∧ C(s, u) → C(r ∨ s, u)

B5. R-CONJOIN. C(r, u) ∧ C(r, v) → C(r, u ∧ v)

B6. CONSISTENCY. ¬C(r,⊥)

B7. NONVACUITY. From r 	 u, infer ¬C(r, u)

Amit K. Chopra, Munindar P. Singh • Multiagent Commitment Alignment

939

B8. WEAKEN. C(r, u ∧ v) ∧ ¬u → C(r, u)

Notice that B1 covers the discharge of commitments. B2 gener-
alizes their detach. Semanticity means that alignment must not fail
in the face of reasoning postulates B1–B8. That is, we must make
sure that the effects of the various messages on commitments are
consistent with respect to the above postulates.

The commitment operations are reproduced below (from [12]).
CREATE, CANCEL, and RELEASE are two-party operations, whereas
DELEGATE and ASSIGN are three-party operations.

CREATE(x, y, r, u) is performed by x, and it causes C(x, y, r, u)
to hold. CANCEL(x, y, r, u) is performed by x, and it causes C(x, y,

r, u) to not hold. RELEASE(x, y, r, u) is performed by y, and it
causes C(x, y, r, u) to not hold. DELEGATE(x, y, z, r, u) is per-
formed by x, and it causes C(z, y, r, u) to hold. ASSIGN(x, y, z, r, u)
is performed by y, and it causes C(x, z, r, u) to hold.

Let us define the set of messages that agents can exchange. Let Φ
be a finite set of atomic propositions φ0, . . . , φi (commitments are
not atomic propositions). Inform(x, y, p) is a message from x to
y, where p is a conjunction over Φ. In the commitment operations,
r is a DNF formula over Φ (for example, (φ0 ∧ φ1) ∨ (φ3 ∧ φ4)),
and u is a CNF formula over Φ (for example, (φ0 ∨ φ1) ∧ (φ3 ∨
φ4)). Create(x, y, r, u) and Cancel(x, y, r, u) are messages from
x to y; Release(x, y, r, u) from y to x; Delegate(x, y, z, r, u)
from x to z; and Assign(x, y, z, r, u) from y to x. Suppose c =
C(x, y, r, u). Then Create(c) stands for Create(x, y, r, u). We
similarly define Delegate(c, z), Assign(c, z), Release(c), and
Cancel(c).

All atomic propositions are stable, that is, if an atomic propo-
sition holds, it holds forever. In English, stability corresponds to
the perfective aspect, for example, book has been delivered, pay-
ment has been made, and so on [13]. Propositions with explicit
time, such as the book is delivered by 3PM are also stable. Thus
each atomic proposition corresponds to the occurrence of an event:
when the proposition holds, the corresponding event is said to have
occurred. A commitment, however, is not a stable proposition. A
commitment may come to not hold because it was discharged, can-
celled, or released, leaving the agents sensitive to race conditions
over commitments.

Below, let cB = C(Bookie, Alice, $12, BeatingtheOdds);
cG = C(Bookie, Alice, $12, GamblingT ips);
c0 = C(Bookie, Alice, $12, BeatingtheOdds∧GamblingT ips);
c1 = C(Bookie, Alice, $12 ∨ coupon, BeatingtheOdds);
c2 = C(Bookie, Alice, $12 ∧ coupon, BeatingtheOdds). Intu-
itively, c0 is a stronger commitment than cB (an additional book for
the same price); c1 is stronger than cB (two ways to obtain a book
instead of one); cB is stronger than c2 (fewer conditions need to be
satisfied to obtain a book). Definition 1 captures this intuition.

DEFINITION 1. C(x, y, r, u) is stronger than C(x, y, s, v), de-
noted by C(x, y, r, u) � C(x, y, s, v), iff s 	 r and u 	 v.

Thus, for example, c0 � cB . If C(x, y, r, u) � C(x, y, s, v) but
C(x, y, s, v) �� C(x, y, r, u), we say C(x, y, r, u) C(x, y, s, v).
B3 and B8 capture the notion of strength deductively. For example,
if c1 holds, then by B3, cB holds as well. Similarly, if c0 holds, then
by B8, cB holds as well—unless BeatingtheOdds holds already
in which case according to B1, cB cannot hold.

3. PRINCIPLES OF ALIGNMENT
The misalignments in Figure 1 are due to the naïve semantics

that upon observing Create(r, u), an agent infers C(r, u); upon
observing Release(r, u) or Cancel(r, u) an agent infers ¬C(r, u).

We propose five principles that guarantee alignment. These prin-
ciples are informed by the nature both of commitments and of dis-

tributed systems. Let us first consider three principles that address
the misalignments in Figure 1.
NOVEL CREATION. Observing Create(r, u) should have no
effect if a stronger commitment C(s, v) has held before.
COMPLETE ERASURE. Observing Release(r, u) should have no
effect if a strictly stronger commitment C(s, v) holds. If no such
C(s, v) holds, then each weaker commitment C(r′, u′) is released.
Cancel(r, u) is analogous.
ACCOMMODATION. Observing Release(r, u) has the effect that
each weaker commitment C(s, v) is treated as if it has held before.
Cancel(r, u) is analogous.

Figure 3(B) exemplifies our graphical notation. We represent
an execution as a sequence diagram. Each point where a message
is sent or received is annotated with the commitments that hold
immediately after the observation; commitments that do not hold
are not shown. If C(r, u) holds and C(r, u) � C(s, v), we only
show C(r, u). Each agent’s vertical line may be annotated at the
top to indicate initial conditions of the interaction.

Figure 2 shows how these principles restore alignment to the
misaligned scenarios of Figure 1. Figure 2 shows offer as
Create(cB), and reject as Release(cB).

Contrast Figures 1(A) and 2(A). In both figures, Bookie and Al-
ice remain aligned at the end. However, in Figure 1(A), Bookie and
Alice both infer cB , whereas in Figure 2(A), neither of them infers
cB . NOVEL CREATION supports Figure 2(A): the first offer causes
cB to hold and resending the offer after receiving a reject has no
effect.

Contrast Figures 1(B) and 2(B). In Figure 1(B), in the end, Al-
ice infers cB , whereas Bookie does not. In Figure 2(B), however,
neither Alice nor Bookie infers cB . Upon receiving the reject, be-
cause of COMPLETE ERASURE, Bookie considers himself released
from the offer; receiving the same offer again has no effect on Alice
because of NOVEL CREATION.

Contrast Figures 1(D) and 2(C). In Figure 1(D), in the end, Al-
ice infers cB , whereas Bookie does not. In Figure 2(C), however,
neither Alice nor Bookie infers cB . Upon receiving the reject, be-
cause of COMPLETE ERASURE, Bookie considers himself released
from the offer; receiving an offer which Alice has already rejected
has no effect on Alice because of ACCOMMODATION and NOVEL
CREATION acting in concert. ACCOMMODATION ensures that Al-
ice’s release of the offer makes it appear as if the offer had been
made before, and hence when Bookie’s actual offer arrives, NOVEL
CREATION ensures the offer has no effect.

Figure 2: Proposed approach

NOVEL CREATION means that resending a Create of a previous
commitment has no effect. In that case, how can Bookie again
offer Alice essentially the same deal that she has rejected before?
Circumstances might have changed, and Bookie might want to see
if Alice will accept the offer this time around.

A possible domain modeling approach is to include identifiers on
the conditions involved so as to distinguish the offers. In practice,
we would place such identifiers anyway, so as to distinguish com-

AAMAS 2009 • 8th International Conference on Autonomous Agents and Multiagent Systems • 10–15 May, 2009 • Budapest, Hungary

940

mitments made to different parties, e.g., to ensure that a different
copy of the book would be delivered to each customer and each cus-
tomer will pay for her purchase. Such identifiers are distinct from
commitment identifiers: they do not apply on commitments and do
not interfere with reasoning about commitments. In Example 5, at
the end, both Alice and Bookie infer that the id1 commitment holds
and the id0 commitment doesn’t.

EXAMPLE 5. Bookie sends Create(Bookie, Alice, $12(id0),
BeatingtheOdds(id0)). Alice sends Release(Bookie,Alice,

$12(id0), BeatingtheOdds(id0)). To offer the “same” deal again,
Bookie sends Create(Bookie, Alice, $12(id1), Beatingthe

Odds(id1)).
Notice that NOVEL CREATION does not say that if a commit-

ment has held before, then it can never hold again; it only says that
a Create message for such a commitment has no effect. A com-
mitment may come to hold again because a Create message for a
stronger commitment is observed. In real life, it is common prac-
tice for a seller to improve its offers, effectively making stronger
commitments, as in Example 6.

EXAMPLE 6. Bookie makes Alice the offer cB . Alice rejects the
offer thus releasing Bookie from cB . However, Bookie is persistent,
and he makes Alice the stronger offer c0 (two books for the same
price). This automatically resurrects cB to ensure consistency.

EXAMPLE 7. Alice rejects Bookie’s improved offer.
When Alice sends Release(c0), COMPLETE ERASURE means

that this not only removes c0, but also cB and cG. Notice that
partial releases are unsuccessful. Because c0 is stronger than cB ,
Release(cB) has no effect—c0 continues to hold.
NOTIFICATION. This principle ensures that two agent’s states are
compared only when both or neither has received vital information.
This leads to two requirements. One, the creditor of a commitment
must notify the debtor of a detach, and the debtor must notify the
creditor of discharge. Two, until an agent sends its pending no-
tifications, it doesn’t have a well-defined visible state. Reducing
the visible states proves crucial because we can define alignment as
agreement between the concerned agents at such states.

Consider Figure 3(A). Initially, Alice is committed to Bob that
if the sky is clear, then she will meet him at the lake, meaning
cL = C(Alice, Bob, clear, lake). We model Bob’s observation of
the sky as a message that Bob receives from the environment Env.
Now, Bob infers the unconditional commitment cUL = C(Alice,

Bob,�, lake) whereas Alice does not yet infer cUL (maybe be-
cause she is in a basement and cannot look at the sky). Thus, Bob
and Alice would be misaligned. The main problem is that Bob has
received some vital information that Alice does not have.

Figure 3: Notifying about detaches

Figure 3(B) shows how alignment is preserved. The bold dot
along Bob’s lifeline indicates that Bob must send the clear notifi-
cation to Alice. The middle state where Bob has detached the com-
mitment but not notified Alice is excluded from consideration—it is
not visible for the purposes of alignment. In this manner, we avoid

a false negative claim about alignment. This case is of a creditor
notifying the debtor of a detach. The case where a debtor notifies a
creditor of a discharge is similar.
PRIORITY. It is possible that a debtor cancels a commitment con-
currently with the creditor detaching it. Recall Example 3 where
Alice’s payment crosses Bookie’s cancellation. Figure 4(A) anno-
tates the same example with commitments. If Bookie’s cancellation
and Alice’s payment cross, Alice and Bookie become misaligned—
Alice infers cU = C(Bookie, Alice,�, BeatingtheOdds) whereas
Bookie does not. The reason is that receiving Cancel(cB) has no
effect on Alice because she already infers cU , which is a stronger
commitment than cB . Receiving Alice’s $12 payment has no effect
on Bookie because there is no commitment to detach anymore.

There is no fundamental reason to prefer the creditor’s or the
debtor’s viewpoint. For each commitment, the parties involved
simply have to agree on what takes priority: cancel over detach, or
detach over cancel. Detach priority means that the debtor considers
its cancellation of a commitment to be overridden by the detach of
the commitment. Cancel priority means that the creditor considers
its detach of a commitment to be overridden by the debtor’s can-
cellation of the commitment. Our theory handles both alternatives,
and shows what the agents must do in each case. Consider a com-
mitment C(r ∧ s, u). Suppose detach has priority over cancel. If
the debtor observes a message that brings about s (a detach) after it
has cancelled C(r∧s, u), then it must send Create(r , u). Alterna-
tively, suppose that cancel has priority over detach. If the creditor
has already detached C(r ∧ s, u) by sending a message that brings
about s, and it then observes a cancellation for C(r∧s, u), then the
creditor must send Release(r, u).

Figure 4: Race between cancel and detach

The protocol that Alice and Bookie are enacting would specify
whether cancel or detach has priority for cB . If detach has prior-
ity, then, as Figure 4(B) shows, Bookie considers its cancellation
to be overridden by the detach, and creates cU . If cancel has pri-
ority, then, as Figure 4(C) shows, Alice considers the detach to be
overridden by the cancellation, and releases Bookie from cU .

4. FORMALIZING ALIGNMENT
Alignment means that whenever an agent infers from its obser-

vations, a commitment in which it is the creditor, then the debtor
must also infer the commitment from its own observations. An ex-
ecution of a multiagent system is a progression of the system from
one (system) state to another. Every time an agent sends or receives
a message, the system progresses to a new state. We would like to
consider all possible executions of the system; however, we need to
ensure that alignment is considered only at well-defined milestones
in any execution; otherwise, we would falsely claim misalignment.
The appropriate milestones are expressed via quiescence and in-
tegrity.

A system state is quiescent if no messages are in transit. In con-
sidering only quiescent states, we ensure the agents are “synced”
up when we verify their alignment. Without quiescence, alignment

Amit K. Chopra, Munindar P. Singh • Multiagent Commitment Alignment

941

is generally impossible because some agents may not yet have ob-
served messages destined for them. Consider Figure 1(C) where
Alice has sent $12 to Bookie but Bookie hasn’t received the pay-
ment. Alice infers that Bookie is now committed to sending her the
book, but Bookie has no clue of an incoming payment, and so isn’t
committed. At quiescence, Bookie would have received the pay-
ment. If even at quiescence, Alice and Bookie disagree, we have
a problem on our hands. Quiescence may only be temporary, be-
cause the agents could be silently computing: it would end when
an agent sends a message based on its internal computations.

We wish to exclude system states where an agent has received
vital information that it hasn’t yet propagated to relevant parties.
In Figure 3(B), it would be premature to consider alignment before
Bob notifies Alice of clear . In this sense, Bob’s notifying Alice of
clear is integral with receiving Inform(clear) from Env. Sim-
ilarly, in Figure 4(B), Bookie sending the Create is integral with
receiving Inform($12). We recognize no intervening states from
the point of view of alignment until all integral observations have
been made; in other words, the intervening states are not visible.
We now turn to the formalization.
Communication. Agents communicate by messaging. Below
m, m′, m0, . . . are variables over messages. Assumptions A1–A4
model communication.

A1. Communication is point-to-point. Below m(x, y) indicates
a message m from x to y.

A2. An agent observes all and only those messages that it sends
or receives. Observations are ordered serially. All observa-
tions pertain to messages. Observations of the environment
are treated as messages from Env .

A3. Messaging is reliable. Messages are neither created nor de-
stroyed by the infrastructure.

A4. Messaging is ordered. Any two messages sent by an agent
to the same recipient are received in order.

An agent x’s observation sequence 〈m0, . . . , mn〉x describes
the sequence of messages x observes in a particular execution. Let
A be a system of k agents. Then, O = [O0, . . . , Ok−1] is an obser-
vation vector over A, where the Ois are the observation sequences,
one for each of the k agents. Below, o is a variable over observation
vectors; ox, etc. are variables over a particular agent’s observation
sequence. A3 and A4 impose validity requirements on vectors.

DEFINITION 2. An observation vector O over A is valid iff
∀x, y ∈ A: (1) if m(x, y) occurs in Oy , then m(x, y) occurs
in Ox; and (2) if m1(x, y) occurs in Oy , and m0(x, y) precedes
m1(x, y) in Ox, then m0(x, y) precedes m1(x, y) in Oy .

Conditions (1) and (2) in Definition 2 capture A3 and A4, re-
spectively. This paper considers only valid observation vectors.

Think of an agent’s observation sequence as representing the
agent’s state at the granularity of the interaction (i.e., ignoring as-
pects of the agent’s state not reflected in its observations). Then an
observation vector represents the state of the system. OA, the set
of all possible observation vectors for system A, is the set of all
possible executions of A.
Quiescence. This means that there are no messages in transit in
the system. Definition 3 states that an observation vector is quies-
cent if and only if every sent message has been received.

DEFINITION 3. An observation vector O ∈ OA is quiescent iff
∀x, y ∈ A, if m(x, y) occurs in Ox, then m(x, y) occurs in Oy .

Integrity. We now show how to specify integrity constraints on
observations. Section 5 specifies the integrity constraints relevant
to alignment. First though, some preliminaries. Let Ox be an ob-
servation sequence of the form 〈. . . , m〉x. Then, for any message

m′, Ox; m′ is the concatenation of Ox with m′, and is of the form
〈. . . , m, m′〉x. Let S(Ox) be the set of propositions that can be
inferred from the observation sequence Ox. Section 5 formalizes
S(Ox). The empty condition ε is trivially in S(Ox). S(Ox) may
be thought of as the state of x after observing the messages in Ox.

�m[B : A]m′�x is an integrity constraint on the observations of
agent x. Here, B and A are the before and after conditions for
the trigger m, and m′ is the effect of m if the before and after
conditions are met.

DEFINITION 4. Consider a constraint �m[B : A]m′�x. m′ is
an enabled effect of m with respect to an observation sequence o

and the constraint iff B ∈ S(o) and A ∈ S(o;m).
An observation sequence Ox is integral with respect to a set of

constraints iff for any prefix o; m of Ox, o; m; M is a prefix of Ox,
where M contains an interleaving of the enabled effects of m with
respect to o and the set of constraints.

An observation vector is integral with respect to a set of con-
straints iff each observation sequence in it is integral with respect
to the set of constraints.

Definition 4 defines enabled messages as those that must be nec-
essarily sent, as deduced from the integrity constraints. An obser-
vation sequence is not integral unless all enabled messages have
been observed. Notice that to be integral, Ox must only contain the
enabled effects (for every prefix); there is no restriction that the en-
abled effects must occur immediately after the trigger. This means
that x may make extraneous observations between the trigger and
its enabled effects; however, the system states corresponding to
those observations are not visible for the purposes of alignment.
Alignment. Definition 5 formalizes the notion of alignment by
considering all potential observations of all agents.

DEFINITION 5. A multiagent system A is aligned (written [〈A〉])
iff ∀O ∈ OA such that O is quiescent and integral with respect to
the integrity constraints, ∀x, y ∈ A : C(x, y, r, u) ∈ S(Oy) ⇒
C(x, y, r, u) ∈ S(Ox).

Definition 5 considers the observations of creditors and debtors
from the same integral and quiescent observation vectors. It says
that if a creditor infers a commitment from its observations, then
the debtor must infer that commitment from its own observations.
When a debtor infers a commitment, but the creditor does not, no
harm is done, and alignment is unaffected.

5. FORMALIZING THE PRINCIPLES
We introduce (nonatomic) propositions created (x, y, r, u),

released (x, y, r, u), and cancelled (x, y, r, u), each corresponding
to the eponymous commitment operation having occurred. Our for-
malization does not require propositions corresponding to the oc-
currence of DELEGATE and ASSIGN. We adopt the postulates B9–
B13 in addition to B1–B8.

B9. released (r, u) → created (r, u)

B10. cancelled (r, u) → created (r, u)

B11. created (r, u) and C(r, u) � C(s, v) ⇒ created (s, v)

B12. released (r, u) and C(r, u) � C(s, v) ⇒ released(s, v)

B13. cancelled (r, u) and C(r, u) � C(s, v) ⇒ cancelled(s, v)

Let’s consider some examples to see how B9–B13 work. Sup-
pose created (c0) holds; by B11, created (cB) and created (cG)
hold. Suppose released(c0) holds; by B9, created (c0) holds too;
by B12, released(cB) and released (cG) hold; by B9, created (cB)
and created (cG) hold.

Let’s see how B9–B13 relate to the principles introduced earlier.
B12 and B13 relate to COMPLETE ERASURE. If a commitment

AAMAS 2009 • 8th International Conference on Autonomous Agents and Multiagent Systems • 10–15 May, 2009 • Budapest, Hungary

942

is released or if it is cancelled, all weaker commitments are re-
leased or cancelled, as may be the case. B9 and B10 (together with
B12 and B13) portray ACCOMMODATION: if a commitment has
been cancelled or released, treat all weaker commitments as if they
had held. B11 relates to NOVEL CREATION. It ensures that once
created(r,u) holds, all commitments weaker than C(r, u) are also
considered created.

Now we define the semantics of the operations themselves in
terms of S(o), the set of propositions that can be inferred from
the observation sequence o. For any set of propositions Q, Q∗

is the deductive closure of Q. QΠ is the atomic projection of Q
such that a proposition q belongs to QΠ if and only if two condi-
tions are satisfied: (1) q belongs to Q, and (2) q is either an atomic
proposition, or of the form C(r, u), created (r, u), released (r, u),
or cancelled (r, u).

Let S(ox) be the current state of x. The general pattern for com-
puting the state S(ox; m) is the following. First modify S(ox) by
adding or removing propositions relevant to m. Let S ′(ox; m) be
the resulting set. S(ox; m) is (S ′(ox; m)∗)Π, in other words, the
atomic projection of the deductive closure of S ′(ox; m). Let us
facilitate this pattern by introducing the notation Q�, the atomic
closure of Q, to mean (Q∗)Π.

B14 is the semantics of Inform(r): r holds upon observing it.

B14. S(o; Inform(r)) = (S(o) ∪ {r})�

Two-Party Operations. The messages Create(r, u), Release(r, u),
and Cancel(r, u) realize the corresponding operations.

B15 and B16 give the semantics of Create(r, u). B15 states
that if created (r, u) or the consequent u already hold, then upon
observing Create(r, u), we insert created (r, u), and compute its
atomic closure to obtain the resulting state. In particular, C(r, u)
does not hold in the resulting state. The condition related to con-
sequent u is present because the consequent of the commitment
and the commitment both holding together is inconsistent accord-
ing to B1. Hence, if u holds, Create(r, u) has no effect. Con-
versely, B16 states that if neither created (r, u) nor u holds in the
current state, then upon observing Create(r, u), we insert C(r, u)
and created (r, u), and compute the atomic closure to obtain the
resulting state.

B15. created (r, u) ∈ S(o) or u ∈ S(o) ⇒
S(o;Create(r, u)) = (S(o) ∪ {created (r, u)})�

B16. created (r, u) �∈ S(o) and u �∈ S(o) ⇒
S(o;Create(r, u)) = (S(o) ∪ {C(r, u), created (r, u)})�

Let ��C(r, u)�� denote the set {C(s, v)|C(r, u) � C(s, v)}, that
is, the set of commitments weaker than C(r, u). According to B17,
upon observing Release(r, u), we remove all commitments weaker
than C(r, u), insert released(r, u), and then compute the atomic
closure to obtain the resulting state. B18 analogously gives the
semantics of Cancel(r, u).

B17. S(o;Release(r, u)) =
((S(o) \ ��C(r, u)��) ∪ {released(r, u)})�

B18. S(o;Cancel (r, u)) =
((S(o) \ ��C(r, u)��) ∪ {cancelled (r, u)})�

B9–B18 accurately capture NOVEL CREATION, COMPLETE ERA-
SURE, and ACCOMMODATION.
Three-Party Operations. Clearly, any implementation of DELE-
GATE and ASSIGN must involve at least two messages. Figure 5(A)
exemplifies the message pattern for delegation. Bookie (the delega-
tor) delegates cB to Charlie (the delegatee). Bookie sends Delegate

(cB , Charlie) to Charlie. Let d_cB = C(Charlie, Alice, $12,

BeatingtheOdds). Upon its receipt, Charlie sends Create(d_cB)

to Alice, thus fully realizing the delegation. Figure 5(B) exempli-
fies the message pattern for assignment. Here, Alice (the assignor)
wants to assign cB from Bookie to Bob (the assignee). Alice sends
Assign(cB, Bob) to Bookie. Let a_cB = C(Bookie, Bob, $12,

BeatingtheOdds). Upon its receipt, Bookie sends Create(a_cB)
to Bob, thus fully realizing the assignment.

B19 and B20 state the semantics of Delegate and Assign mes-
sages, respectively: observing either of these messages has no di-
rect effect on the agent.
B19. S(o;Delegate(x, y, z, r, u)) = S(o)

B20. S(o;Assign(x, y, z, r, u)) = S(o)

The computation of S(o) is closed under B14–B20.
In the delegate and assign patterns, the initiating messages—

Delegate and Assign , respectively—are instructions to an agent
to create a new commitment. R1 and R2 in Table 1 capture the in-
structional nature of the delegate and assign messages, respectively,
as integrity constraints. Each row in Table 1 is in fact, an integrity
constraint on agent behavior, and is of the form �Trigger [Before :
After]Effect�Agent . For example, R1 is �Delegate(x, y, z, r, u)[ε :
ε]Create(z, y, r, u)�z . R3–R8 are explained below.

There are a few points of note about delegation and assignment
as presented here. One, R1 and R2 have nothing to do with restor-
ing alignment. That the Create must follow the instruction simply
alludes to the atomicity of delegation and assignment as operations.

Two, delegation does not involve a notification from the dele-
gator to the creditor that the commitment is being delegated. No
doubt, such notifications could be practically valuable; however,
our aim here is to delineate the core patterns on top of which addi-
tional patterns, such as those involving a notification to the creditor
may be built. For the same reason, assignment does not involve a
notification from the assignor to the assignee.

Three, the new commitment must be explicitly created by the
debtor—the delegatee in the case of delegation and the debtor in
the case of assignment. This reflects upon a principled approach for
manipulating commitments, by reusing the semantics of Create .

Four, if Bookie delegates cB twice to Charlie, then the second
time Charlie need not send a Create : such a message would be
useless under NOVEL CREATION. This paper sacrifices optimiza-
tion in favor of simplicity.

Considerations of when a commitment operation may success-
fully occur are beyond our scope (for delegation, [9] offers an in-
teresting discussion). This papers assumes that all operations are
successful. Hence, even though Figure 5(A) shows cB to hold be-
fore delegation is initiated, that should not be interpreted as a suc-
cess precondition for delegation. Even if Bookie did not infer cB

initially, Bookie’s delegate message to Charlie would still cause
Charlie to send the create message to Alice.

Figure 5: The delegate and assign patterns

5.1 Notifications
Recall that NOTIFICATION states that creditors must notify debtors

of detaches, and debtors must notify creditors of discharges. Two
cases arise for each kind.

Amit K. Chopra, Munindar P. Singh • Multiagent Commitment Alignment

943

Name Agent Trigger Before After Effect
R1 Delegate z Delegate(x, y, z, r, u) ε ε Create(z, y, r, u)
R2 Assign x Assign(x, y, z, r, u) ε ε Create(x, z, r, u)
R3 Detach1 y Inform(z, y, s) C(x, y, r∧s′, u)∧¬C(x, y, r, u)∧¬s′

where s 	 s′
ε Inform(y, x, s′)

R4 Detach2 y Create(x, y, s, u) ¬C(x, y, r ∧ s′, u) ∧ s′ C(x, y, r ∧ s′, u) Inform(y, x, s′)
R5 Discharge1 x Inform(z, x, u) C(x, y, r, u′) ∧ ¬u′ where u 	 u′ ε Inform(x, y, u′)
R6 Discharge2 x Create(x, y, r, u) ¬C(x, y, r, u) ∧ u′ where u 	 u′ ε Inform(x, y, u′)
R7 D-Priority x Inform(z, x, s) cancelled (x, y, r∧s′, u)∧¬C(x, y, r∧

s′, u) ∧ ¬s′ where s 	 s′
ε Create(x, y, r, u)

R8 C-Priority y Cancel(x, y, r ∧ s, u) s ∧ C(x, y, r ∧ s, u) ∧ ¬C(x, y, r′, u′)
such that C(x, y, r′, u′) C(x, y, r, u)

ε Release(x, y, r, u)

Table 1: Integrity constraints on agent behavior

Detach1 (R3). y infers C(x, y, r∧s′, u) and ¬C(x, y, r, u)∧¬s′,
meaning that the commitment is not detached yet. y then
observes Inform(s) from some z such that s 	 s′. As a
result, s′ holds and C(x, y, r ∧ s′, u) is detached, and y in-
fers C(x, y, r, u). y must now inform x about the detach by
sending Inform(y, x, s′).

Detach2 (R4). y infers s′ and ¬C(x, y, r ∧ s′, u), and then ob-
serves Create(x, y, s, u) such that C(x, y, r ∧ s′, u) holds.
C(x, y, r∧s′, u) is detached upon s′; hence, y infers C(x, y,

r, u). y must now inform x about the detach by sending
Inform(y, x, s′).

Figure 6: Detach notifications

Figure 3(B) illustrates R3. When Bob receives Inform(clear),
R3 kicks in and ensures Alice is notified, thus preserving align-
ment. Figure 6(A) is another example of R3 at work. Here Al-
ice and Sarah are committed to meeting Bob at the lake if the sky
is clear (cL and cLS , respectively). At some point, Bob figures
the sky is clear and therefore infers that both Alice and Sarah are
now unconditionally committed to meet him (cUL and cULS , re-
spectively). R3 ensures that both Alice and Sarah are notified that
the clear condition has been met, thus preserving alignment. Fig-
ures 6(B) illustrates R4. Here, Bob already infers clear. So when
Bob receives Create(cL), Bob infers that Alice is unconditionally
committed (cUL). R4 kicks in and ensures Alice is notified.

Discharge1 (R5). x infers C(x, y, r, u′) and ¬u′. x then observes
Inform(u) from some z such that u 	 u′. As a result, u′

holds and C(x, y, r, u′) is discharged. x must now inform
the creditor y of the discharge by sending Inform(x, y, u′).

Discharge2 (R6). x infers u′. x then sends Create(x, y, r, u)
such that u 	 u′. x will not infer C(x, y, r, u′) because u′

holds. However, y may not yet infer u′. Therefore, y may in-
fer C(x, y, r, u′). Hence, x must now send Inform(x, y, u′).

Figure 7 illustrates the usage of R5. Alice is committed to both
Bob and Sarah to be at the lake (cL and sL, respectively). When

Figure 7: Discharge notification

Alice gets to the lake, she discharges those commitments. R5 kicks
in and ensures that both Bob and Sarah are informed accordingly
so that they also consider their respective commitments discharged.

In Figure 5(A), after Alice observes the create message from
Charlie, suppose Alice sends Bookie Inform($12) (if she already
inferred $12, then upon observing the create, R4 would apply).
This detaches cB . Then R3 kicks in and ensures that Alice also
sends Charlie Inform($12). This should not be taken to mean that
Alice sends $12 each to Bookie and Charlie—the proposition $12 is
semantically no different than the proposition clear. An analogous
argument can be made for the scenario in Figure 5(B). Suppose that
after Bookie sends the create message, it sends Inform

(BeatingtheOdds) to Alice. Now R5 would ensure that Bookie
also sent Inform(BeatingtheOdds) to Bob.

5.2 Priority
Below, we formalize the implications of detach priority and can-

cel priority for a commitment C(x, y, r ∧ s, u).
Detach Priority (R7). x infers cancelled(x, y, r ∧ s′, u) and
¬C(x, y, r ∧ s′, u)∧¬s′. (Note that cancelled(x, y, r ∧ s′, u) �⇒
¬C(x, y, r ∧ s′, u). A cancelled commitment may come to hold
again because a stronger commitment was created.) x then ob-
serves Inform(s) from some z such that s 	 s′. If C(x, y, r∧s′, u)
had not been cancelled, it would have been detached. But y may
not know about the cancellation yet. Therefore, the debtor must act
as if the commitment has been detached. Hence, it must now send
Create(x, y, r, u).
Cancel Priority (R8). y infers s and C(x, y, r ∧ s, u). Therefore,
it also infers C(x, y, r, u). y then observes Cancel(x, y, r ∧ s, u).
It could be that x sent Cancel(x, y, r ∧ s, u) without knowing that
s holds, and therefore x may not infer C(x, y, r, u). To fix this pos-
sible misalignment, y must now send Release(x, y, r, u). y though
does not have to send the release if a commitment strictly stronger
than C(x, y, r, u) holds. Sending the release then will be ineffec-
tive because of COMPLETE ERASURE.

Figure 4(B) illustrates the case of detach priority to fix the mis-
alignment of Figure 4(A), whereas Figure 4(C) illustrates the case

AAMAS 2009 • 8th International Conference on Autonomous Agents and Multiagent Systems • 10–15 May, 2009 • Budapest, Hungary

944

of cancel priority.
It could be that in the case of detach priority, Alice cheats by

sending the payment even after receiving the cancel. Analogously,
in the case of cancel priority, Bookie could cheat and get away with
it. This paper does not address the issue of trust; it is orthogonal to
the problem of alignment.

R1–R8 are weak and locally executable constraints on an agent’s
behavior because they only call for an agent to send messages.
They involve neither receiving a message nor synchronizing with
another agent.

5.3 Putting It All Together
Now it remains to show that under the assumptions we have

made, the formalization of commitment operations we have pro-
posed guarantees that any multiagent system is aligned. Notice that
a commitment is strengthened only through a Create or an Inform

(as detach). A commitment is removed or weakened only through
a Release or Cancel , or an Inform (as discharge).

THEOREM 1. For any A, A1–A4, B1–B20 and R1–R8
guarantee alignment, that is, [〈A〉].

PROOF. (Sketch) A is aligned at the outset, i.e., in the obser-
vation vector of empty sequences, when no agent has made any
observations. Inductively, assume that A is aligned up to a quies-
cent, integral observation vector O. Consider two agents, x and y

in A.
Now expand O to a quiescent, integral observation vector O′ =

O; OΔ. There are two possible threats to alignment: (1) if y infers
a new commitment as creditor that its debtor doesn’t; and (2) if
y continues to infer a commitment as creditor that it previously
inferred, but its debtor no longer does.

For (1), consider a commitment added by y, i.e., C(x, y, r, u) ∈
S(O′

y)\S(Oy). Without loss of generality, assume C(x, y, r, u) is
maximally strong, i.e., no other commitment added by y is strictly
stronger than C(x, y, r, u). This means OΔ

y includes receiving a
detach (Inform) or a create message. For a detach, by integrity, y

would have sent a message to x, which would have landed within
OΔ

x to ensure quiescence. A create would have originated from x.
In either case, the quiescence of O′ ensures that O′

x 	 C(x, y, r, u).
For (2), consider a commitment not added by y but removed

by x, i.e., C(x, y, r, u) ∈ S(Oy) and C(x, y, r, u) ∈ S(Ox) \
S(O′

x). Without loss of generality, assume C(x, y, r, u) is maxi-
mally strong, i.e., no other commitment removed by x is strictly
stronger than C(x, y, r, u).

Because C(x, y, r, u) ∈ S(Oy), by our inductive hypothesis,
C(x, y, r, u) ∈ S(Ox). Hence, if C(x, y, r, u) �∈ S(O′

x), this
means OΔ

x includes receiving a discharge or release, or sending a
cancel message. The release would be sent by y, thus C(x, y, r, u) �∈
S(O′

y). The cancel would be sent to y and the discharge would
be propagated to y to ensure integrity. Therefore, by quiescence,
C(x, y, r, u) �∈ S(O′

y).

6. DISCUSSION
Our formalization of the commitment operations meets both au-

tonomy compatibility and semanticity. It identifies the fundamen-
tal multiparty messaging patterns. Other business patterns may be
built on top. For example, our delegation pattern may be thought of
as delegation while retaining responsibility since the delegator re-
mains committed too. A delegation without responsibility pattern
would additionally involve a cancellation message from the delega-
tor to the creditor. Singh et al. describe several such patterns from
an architectural point of view [14].

Our approach can benefit areas where commitments are used
as the central basis for semantics. The connection with commu-
nication languages [4, 5] and protocols [3] is the most obvious.
Winikoff [15] studies how commitments may be implemented in a
distributed setting. However, his solution only allows for a mono-
tonically increasing set of commitments, and does not support dis-
charge, release, and cancel.

Argumentation (for example, see [1]) is another major applica-
tion. Players in a dialogue game are envisaged as having private
commitment stores. In most current work, a dialogue protocol,
which limits how and when the players may make moves, also
helps to keep the agents aligned. However, it may be unduly re-
strictive; for example, it may only allow turn taking. Our results
could lead to more flexible and robust dialogue protocols.

The problem of state alignment in distributed systems in a gen-
eral one. Our approach exploits the semantics of commitments to
enable a flexible and principled approach. The work on belief align-
ment is relevant [6, 10], although it doesn’t involve the richness of
commitment operations and multiparty interactions as studied here.

7. REFERENCES
[1] L. Amgoud, N. Maudet, and S. Parsons. An

argumentation-based semantics for agent communication
languages. In Proc. ECAI, 2002.

[2] A. K. Chopra and M. P. Singh. Constitutive interoperability.
In Proc. AAMAS, 2008.

[3] N. Desai, A. K. Chopra, and M. P. Singh. Representing and
reasoning about commitments in business processes. In
Proceedings of the 22nd Conference on Artificial
Intelligence, 2007.

[4] R. A. Flores, P. Pasquier, and B. Chaib-draa. Conversational
semantics with social commitments. In Agent
Communication, volume 3396 of LNCS. Springer, 2004.

[5] N. Fornara and M. Colombetti. A commitment-based
approach to agent communication. Applied Artificial
Intelligence, 18(9-10), 2004.

[6] M. Huhns and D. M. Bridgeland. Multiagent truth
maintenance. IEEE Transactions on Systems, Man, and
Cybernetics, 21(6), 1991.

[7] A. D. Kshemkalyani, M. Raynal, and M. Singhal. An
introduction to snapshot algorithms in distributed computing.
Distributed Systems Engineering, 2(4), 1995.

[8] P. McBurney and S. Parsons. Posit spaces: a performative
model of e-commerce. In Proc. AAMAS, 2003.

[9] T. J. Norman and C. Reed. Delegation and responsibility. In
Proc. Workshop on Agent Theories Architectures and
Languages, 2001.

[10] S. Paurobally, J. Cunningham, and N. R. Jennings. Ensuring
consistency in the joint beliefs of interacting agents. In Proc.
AAMAS, 2003.

[11] M. Rovatsos. Dynamic semantics for agent communication
languages. In Proc. AAMAS, 2007.

[12] M. P. Singh. An ontology for commitments in multiagent
systems: Toward a unification of normative concepts.
Artificial Intelligence and Law, 7, 1999.

[13] M. P. Singh. Semantical considerations on dialectical and
practical commitments. In Proc. AAAI, 2008.

[14] M. P. Singh, A. K. Chopra, and N. Desai. Commitment-based
SOA. IEEE Computer, 42, 2009. Accepted.

[15] M. Winikoff. Implementing commitment-based interactions.
In Proc. AAMAS, 2007.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

